thakur vikram siongh

Monday, November 2, 2015

Universe


universe এর চিত্র ফলাফল
The Universe is all of time and space and its contents. The Universe includes planetsstarsgalaxies, the contents of intergalactic space, the smallest subatomic particles, and all matter and energy. The observable universe is about 28 billion parsecs (91 billion light-years) in diameter at the present time. The size of the whole Universe is not known and may be infinite. Observations and the development of physical theories have led to inferences about the composition and evolution of the Universe.

Planet


universe এর চিত্র ফলাফল

A planet (from Ancient Greek ἀστήρ πλανήτης (astēr planētēs), or πλάνης ἀστήρ (plánēs astēr), meaning "wandering star") is an astronomical object orbiting a starbrown dwarf, or stellar remnant that
The term planet is ancient, with ties to history, science, mythology, and religion. Several planets in the Solar System can be seen with the naked eye. These were regarded by many early cultures as divine, or as emissaries of deities. As scientific knowledge advanced, human perception of the planets changed, incorporating a number of disparate objects. In 2006, the International Astronomical Union (IAU) officially adopted a resolution defining planets within the Solar System. This definition is controversial because it excludes many objects of planetary mass based on where or what they orbit. Although eight of the planetary bodies discovered before 1950 remain "planets" under the modern definition, some celestial bodies, such as CeresPallasJunoVesta(each an object in the solar asteroid belt), and Pluto (the first trans-Neptunian object discovered), that were once considered planets by the scientific community are no longer viewed as such.
The planets were thought by Ptolemy to orbit Earth in deferent and epicycle motions. Although the idea that the planets orbited the Sun had been suggested many times, it was not until the 17th century that this view was supported by evidence from the firsttelescopic astronomical observations, performed by Galileo Galilei. By careful analysis of the observation data, Johannes Keplerfound the planets' orbits were not circular but elliptical. As observational tools improved, astronomers saw that, like Earth, the planets rotated around tilted axes, and some shared such features as ice caps and seasons. Since the dawn of the Space Age, close observation by space probes has found that Earth and the other planets share characteristics such as volcanism,hurricanestectonics, and even hydrology.
Planets are generally divided into two main types: large low-density giant planets, and smaller rocky terrestrials. Under IAU definitions, there are eight planets in the Solar System. In order of increasing distance from the Sun, they are the four terrestrials,MercuryVenus, Earth, and Mars, then the four giant planets, JupiterSaturnUranus, and Neptune. Six of the planets are orbited by one or more natural satellites.
More than a thousand planets around other stars ("extrasolar planets" or "exoplanets") have been discovered in the Milky Way: as of 1 November 2015, 1977 known extrasolar planets in 1257 planetary systems (including 490 multiple planetary systems), ranging in size from just above the size of the Moon to gas giants about twice as large as Jupiter. On December 20, 2011, theKepler Space Telescope team reported the discovery of the first Earth-sized extrasolar planets, Kepler-20e and Kepler-20f,orbiting a Sun-like starKepler-20. A 2012 study, analyzing gravitational microlensing data, estimates an average of at least 1.6 bound planets for every star in the Milky Way. Around one in five Sun-like stars is thought to have an Earth-sized[c] planet in its habitable zone.


Star



universe এর চিত্র ফলাফল

A star is a luminous sphere of plasma held together by its own gravity. The nearest star to Earth is the Sun. Other stars are visible from Earth during the night, appearing as a multitude of fixed luminous points in the sky due to their immense distance from Earth. Historically, the most prominent stars were grouped into constellations and asterisms, and the brightest stars gained proper names. Extensivecatalogues of stars have been assembled by astronomers, which provide standardized star designations.
For at least a portion of its life, a star shines due to thermonuclear fusion of hydrogen into helium in its core, releasing energy that traverses the star's interior and then radiates into outer space. Once the hydrogen in the core of a star is nearly exhausted, almost all naturally occurring elements heavier than helium are created by stellar nucleosynthesis during the star's lifetime and, for some stars, bysupernova nucleosynthesis when it explodes. Near the end of its life, a star can also contain degenerate matterAstronomers can determine the mass, age, metallicity (chemical composition), and many other properties of a star by observing its motion through space,luminosity, and spectrum respectively. The total mass of a star is the principal determinant of its evolution and eventual fate. Other characteristics of a star, including diameter and temperature, change over its life, while the star's environment affects its rotation and movement. A plot of the temperature of many stars against their luminosities, known as a Hertzsprung–Russell diagram (H–R diagram), allows the age and evolutionary state of a star to be determined.
A star's life begins with the gravitational collapse of a gaseous nebula of material composed primarily of hydrogen, along with helium and trace amounts of heavier elements. Once the stellar core is sufficiently dense, hydrogen becomes steadily converted into helium through nuclear fusion, releasing energy in the process.[1] The remainder of the star's interior carries energy away from the core through a combination of radiative and convective processes. The star's internal pressure prevents it from collapsing further under its own gravity. Once the hydrogen fuel at the core is exhausted, a star with at least 0.4 times the mass of the Sun expands to become a red giant, in some cases fusing heavier elements at the core or in shells around the core. The star then evolves into a degenerate form, recycling a portion of its matter into the interstellar environment, where it will contribute to the formation of a new generation of stars with a higher proportion of heavy elements. Meanwhile, the core becomes a stellar remnant: a white dwarf, a neutron star, or (if it is sufficiently massive) a black hole.
Binary and multi-star systems consist of two or more stars that are gravitationally bound, and generally move around each other in stableorbits. When two such stars have a relatively close orbit, their gravitational interaction can have a significant impact on their evolution. Stars can form part of a much larger gravitationally bound structure, such as a star cluster or a galaxy.


Galaxy

universe এর চিত্র ফলাফল

A galaxy is a gravitationally bound system of starsstellar remnantsinterstellar gasdust, and dark matter. The word galaxy is derived from the Greek galaxias (γαλαξίας), literally "milky", a reference to the Milky Way. Galaxies range in size from dwarfs with just a few thousand (103) stars to giants with one hundred trillion (1014) stars, each orbiting their galaxy's own center of mass. Galaxies are categorized according to their visual morphology, including ellipticalspiral, andirregular. Many galaxies are thought to have black holes at their active centers. The Milky Way's central black hole, known as Sagittarius A*, has a mass four million times greater than our own Sun. As of July 2015, EGSY8p7 is the oldest and most distant galaxy with a light travel distance of 13.2 billion light-years from Earth, and observed as it existed 570 million years after the Big Bang. Previously, as of May 2015, EGS-zs8-1 was the most distant known galaxy, estimated to have alight travel distance of 13.1 billion light-years away and to have 15% of the mass of the Milky Way.
Approximately 170 billion (1.7 × 1011) to 200 billion (2.0 × 1011) galaxies exist in the observable universe. Most of the galaxies are 1,000 to 100,000 parsecs in diameter and usually separated by distances on the order of millions of parsecs (or megaparsecs). The space between galaxies is filled with a tenuous gas with an average density less than one atom per cubic meter. The majority of galaxies are gravitationally organized into associations known as galaxy groupsclusters, andsuperclusters. At the largest scale, these associations are generally arranged into sheets and filaments that are surrounded by immense voids.


Intergalatic space


universe এর চিত্র ফলাফল

Intergalactic space is the physical space between galaxies. The huge spaces between galaxy clusters are called the voids. Surrounding and stretching between galaxies, there is a rarefied plasma that is organized in a galactic filamentary structure.This material is called the intergalactic medium (IGM). The density of the IGM is 5–200 times the average density of the Universe. It consists mostly of ionized hydrogen; i.e. a plasma consisting of equal numbers of electrons and protons. As gas falls into the intergalactic medium from the voids, it heats up to temperatures of 105 K to 107 K, which is high enough so that collisions between atoms have enough energy to cause the bound electrons to escape from the hydrogen nuclei; this is why the IGM is ionized. At these temperatures, it is called thewarm–hot intergalactic medium (WHIM). (Although the plasma is very hot by terrestrial standards, 105 K is often called "warm" in astrophysics.) Computer simulations and observations indicate that up to half of the atomic matter in the Universe might exist in this warm–hot, rarefied state. When gas falls from the filamentary structures of the WHIM into the galaxy clusters at the intersections of the cosmic filaments, it can heat up even more, reaching temperatures of 108 K and above in the so-called intracluster medium.




Subatomic particle


universe এর চিত্র ফলাফল


In the physical sciences, subatomic particles are particles much smaller than atoms. There are two types of subatomic particles:elementary particles, which according to current theories are not made of other particles; and composite particles. Particle physicsand nuclear physics study these particles and how they interact.[3]
In particle physics, the concept of a particle is one of several concepts inherited from classical physics. But it also reflects the modern understanding that at the quantum scale matter and energy behave very differently from what much of everyday experience would lead us to expect.
The idea of a particle underwent serious rethinking when experiments showed that light could behave like a stream of particles (called photons) as well as exhibit wave-like properties. This led to the new concept of wave–particle duality to reflect that quantum-scale "particles" behave like both particles and waves (also known as wavicles). Another new concept, the uncertainty principle, states that some of their properties taken together, such as their simultaneous position and momentum, cannot be measured exactly. In more recent times, wave–particle duality has been shown to apply not only to photons but to increasingly massive particles as well.
Interactions of particles in the framework of quantum field theory are understood as creation and annihilation of quanta of corresponding fundamental interactions. This blends particle physics with field theory

Observable universe


universe এর চিত্র ফলাফল


The observable universe consists of the galaxies and other matter that can, in principle, be observed from Earth at the present time because light and other signals from these objects have had time to reach the Earth since the beginning of thecosmological expansion. Assuming the universe is isotropic, the distance to the edge of the observable universe is roughly the same in every direction. That is, the observable universe is a spherical volume (a ball) centered on the observer. Every location in the Universe has its own observable universe, which may or may not overlap with the one centered on Earth.
The word observable used in this sense does not depend on whether modern technology actually permits detection ofradiation from an object in this region (or indeed on whether there is any radiation to detect). It simply indicates that it is possible in principle for light or other signals from the object to reach an observer on Earth. In practice, we can see light only from as far back as the time of photon decoupling in the recombination epoch. That is when particles were first able to emitphotons that were not quickly re-absorbed by other particles. Before then, the Universe was filled with a plasma that was opaque to photons.
The surface of last scattering is the collection of points in space at the exact distance that photons from the time of photon decoupling just reach us today. These are the photons we detect today as cosmic microwave background radiation (CMBR). However, with future technology, it may be possible to observe the still older relic neutrino background, or even more distant events via gravitational waves (which also should move at the speed of light). Sometimes astrophysicists distinguish between the visible universe, which includes only signals emitted since recombination—and the observable universe, which includes signals since the beginning of the cosmological expansion (the Big Bang in traditional cosmology, the end of the inflationary epoch in modern cosmology). According to calculations, the comoving distance (current proper distance) to particles from the CMBR, which represent the radius of the visible universe, is about 14.0 billion parsecs (about 45.7 billion light years), while the comoving distance to the edge of the observable universe is about 14.3 billion parsecs (about 46.6 billion light years), about 2% larger.
The best estimate of the age of the universe as of 2015 is 13.799±0.021 billion years but due to the expansion of spacehumans are observing objects that were originally much closer but are now considerably farther away (as defined in terms of cosmological proper distance, which is equal to the comoving distance at the present time) than a static 13.8 billion light-yearsdistance. It is estimated that the diameter of the observable universe is about 28.5 gigaparsecs (93 billion light-years, 8.8×1026 metres or 5.5×1023 miles), putting the edge of the observable universe at about 46.5 billion light-years away.


Comoving distance


universe এর চিত্র ফলাফল

In standard cosmologycomoving distance and proper distance are two closely related distance measures used by cosmologiststo define distances between objects. Proper distance roughly corresponds to where a distant object would be at a specific moment ofcosmological time, which can change over time due to the expansion of the universeComoving distance factors out the expansion of the universe, giving a distance that does not change in time due to the expansion of space (though this may change due to other, local factors such as the motion of a galaxy within a cluster). Comoving distance and proper distance are defined to be equal at the present time; therefore, the ratio of proper distance to comoving distance now is 1. At other times, the scale factor differs from 1. The Universe's expansion results in the proper distance changing, while the comoving distance is unchanged by this expansion because it is the proper distance divided by that scale factor.

No comments:

Post a Comment